Rapidly Rotating Convection: When Geometry Matters

- The problem:
 - Rotationally constrained: \(E = \frac{\nu}{\Omega d^2} \ll 1, \ Ro = \frac{U}{\Omega d} \ll 1 \)
 - Highly turbulent: \(Re = \frac{U d}{\nu} \gg 1 \)
 - Unstably stratified
Rapidly Rotating Convection: When Geometry Matters

- The problem:
 - Rotationally constrained: \(E = \frac{\nu}{\Omega d^2} \ll 1 \), \(Ro = \frac{U}{\Omega d} \ll 1 \)
 - Highly turbulent: \(Re = \frac{U d}{\nu} \gg 1 \)
 - Unstably stratified

Earth’s core:

\(Ro \sim 10^{-7}, E \sim 10^{-15}, Re \sim 10^8 \)
Rapidly Rotating Convection: When Geometry Matters

- The problem:
 - Rotationally constrained: \(E = \frac{\nu}{\Omega d^2} \ll 1 \), \(Ro = \frac{U}{\Omega d} \ll 1 \)
 - Highly turbulent: \(Re = \frac{Ud}{\nu} \gg 1 \)
 - Unstably stratified

Earth’s core:

\(Ro \sim 10^{-7}, \ E \sim 10^{-15}, \ Re \sim 10^8 \)

MHD environment, but don’t understand convection yet
Spherical vs. Cartesian

- Traveling Rossby waves
- Scalings:
 \[k_\phi \sim E^{-1/3} \quad k_R \sim E^{-2/9} \quad k_Z \sim O(1) \]

- Stationary for Pr > 1
- Scalings:
 \[k_\perp \sim E^{-1/3} \quad k_Z \sim O(1) \]
Spherical vs. Cartesian

- Traveling Rossby waves
 - Scalings:
 \[k_\phi \sim E^{-1/3} \quad k_R \sim E^{-2/9} \quad k_Z \sim O(1) \]

- Stationary for Pr > 1
 - Scalings:
 \[k_{\perp} \sim E^{-1/3} \quad k_Z \sim O(1) \]

Small scales directly influenced by geometry!
Parameterization?
Small Scale Model for Sphere: The Annulus

- Annulus inscribed within sphere
- Captures “local” convective structures
- Theory/asympototics allows for identification of small-scales
Small Scale Model for Sphere: The Annulus

- Annulus inscribed within sphere
- Captures “local” convective structures
- Theory/asymptotics allows for identification of small-scales

What to do next?
- Couple to large-scale models
- Prandtl number effects