Toward faster and more accurate computation of hydrodynamic droplet-droplet interactions.

Computing fluid interactions in a turbulent background flow

Lou Rossi & Claudio Torres

Department of Mathematical Sciences
University of Delaware

NSF OCI-0904934

Multiphase Turbulent Flow Workshop - Aug 2012
Peta-Apps Algorithms

Ax = b
Outline

1. The cloud/droplet model
2. Krylov space methods
3. Implications for our hydrodynamic interaction model
4. The algorithm warehouse
5. Conclusions and future work
Stokes flow around spheres in a turbulent background flow.
Stokes flow around spheres in a turbulent background flow.

Features

- Spectrally resolved driven turbulent flow (U).
- Spheres are passive agents in the turbulent flow.
- Spheres induce a Stokes flow (u).
- Spheres interact with each other.
Stokes flow around spheres in a turbulent background flow.

Features

- Spectrally resolved driven turbulent flow (U).
- Spheres are passive agents in the turbulent flow.
- Spheres induce a Stokes flow (u).
- Spheres interact with each other.
Stokes flow around spheres in a turbulent background flow.

Features

- Spectrally resolved driven turbulent flow (U).
- Spheres are passive agents in the turbulent flow.
- Spheres induce a Stokes flow (u).
- Spheres interact with each other.
Stokes flow around spheres in a turbulent background flow.

- Spectrally resolved driven turbulent flow \((U)\).
- Spheres are passive agents in the turbulent flow.
- Spheres induce a Stokes flow \((u)\).
- Spheres interact with each other.
Droplets are (were) a bottleneck
The mathematical model.

Flow field induced by k^{th} particle in isolation (free stream velocity V_p).

$$u_S(\mathbf{r}^{(k)}, a^{(k)}, V_p^{(k)}) = \frac{3}{4} \left[\frac{a^{(k)}}{r^{(k)}} - \left(\frac{a^{(k)}}{r^{(k)}} \right)^3 \right] \frac{\mathbf{r}^{(k)}}{(r^{(k)})^2} (V_p^{(k)} \cdot \mathbf{r}^{(k)}) +$$

$$\left[\frac{3 a^{(k)}}{4 r^{(k)}} + \frac{1}{4} \left(\frac{a^{(k)}}{r^{(k)}} \right)^3 \right] V_p^{(k)}$$
The mathematical model.

Interacting particles...

\[u^{(k)} = \sum_{m=1, m \neq k}^{N_p} u_s \left(d^{(mk)} ; a^{(m)} , V^{(m)} - U(Y^{(m)} , t) - u^{(m)} \right), \]

\[k = 1 \ldots N_p \]
The mathematical model.

Interacting particles...

\[u^{(k)} = \sum_{m=1, m \neq k}^{N_p} u_s \left(d^{(mk)}; a^{(m)}, V^{(m)} - U(Y^{(m)}, t) - u^{(m)} \right), \]

\[k = 1 \ldots N_p \]

\[u(x, t) = \sum_{k=1}^{N_p} u_s(r^{(k)}; a^{(k)}, V^{(k)} - U(Y^{(k)}, t) - u^{(k)}) \]
Generalized Minimal Residual

Solving $Ax = b$ for our cloud system.

- Droplet interactions: $1/r$.
- Interactions are cut off when $r > 50a$.

Droplet interactions: $1/r$. Interactions are cut off when $r > 50a$.

Move better... move faster...

Lou Rossi & Claudio Torres

The cloud/droplet model

Krylov space methods

Implications for our hydrodynamic interaction model

The algorithm warehouse

Conclusions and future work
Generalized Minimal Residual

Solving $Ax = b$ for our cloud system.

- Droplet interactions: $1/r$.
- Interactions are cut off when $r > 50a$.

Krylov space:

$$K_m(A, x_0) = \text{span}\{x_0, Ax_0, A^2x_0, \ldots, A^{m-1}x_0\}$$

Big idea: We solve the system efficiently by finding solutions in K_m, $m < \text{dim}(A)$.
Generalized Minimal Residual

General features of GMRes.

- GMRes constructs an orthonormal basis for K_m and \ldots
- GMRes minimizes $\|b - Ax_m\|_2 = \|r\|$ over the space of all possible vectors $x_m = x_0 + V_m y$.
- Like most good iterative methods, convergence is geometric under many circumstances.
- Unfortunately, our droplet system is not positive definite.
Generalized Minimal Residual

General features of GMRes.

- GMRes constructs an orthonormal basis for K_m and ...
- GMRes minimizes $\|b - Ax_m\|_2 = \|r\|$ over the space of all possible vectors $x_m = x_0 + V_m y$.

- Like most good iterative methods, convergence is geometric under many circumstances.
- Unfortunately, our droplet system is not positive definite.
Generalized Minimal Residual

General features of GMRes.

- GMRes constructs an orthonormal basis for K_m and ...
- GMRes minimizes $\| b - Ax_m \|_2 = \| r \|$ over the space of all possible vectors $x_m = x_0 + V_m y$.
- Like most good iterative methods, convergence is geometric under many circumstances.

\[
\| r_m \| \leq \left(1 - \frac{\lambda_{\text{min}}(A + A^T)}{2\lambda_{\text{max}}(A + A^T)} \right)^{m/2} \kappa_2(V) \| r_0 \|
\]

- Unfortunately, our droplet system is not positive definite.
Generalized Minimal Residual

General features of GMRes.

- GMRes constructs an orthonormal basis for K_m and \ldots
- GMRes minimizes $\|b - Ax_m\|_2 = \|r\|$ over the space of all possible vectors $x_m = x_0 + V_my$.
- Like most good iterative methods, convergence is geometric under many circumstances.
- Unfortunately, our droplet system is not positive definite.
Sad truth: Our A is not positive definite.
Sad truth: Our A is not positive definite.

Happy result: We can still estimate a bound on the convergence rate.

$$\rho = \frac{\lambda_M - \lambda_m + 2\delta}{\lambda_M + \lambda_m + 2\sqrt{\lambda_M\lambda_m + \delta^2}}$$
Sad truth: Our A is not positive definite.

Happy result: We can still estimate a bound on the convergence rate.

$$\rho = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} + \frac{2\delta}{(\sqrt{\lambda_M} + \sqrt{\lambda_m})^2} + O(\delta^2), \quad \kappa = \frac{\lambda_M}{\lambda_m}$$
Simple analytic examples
Simple analytic examples

\[a_1 / a_2 \]

\[\lambda_1 \]

\[\lambda_2 \]
Can we solve the droplet system under general circumstances?

Move better... move faster...

Lou Rossi & Claudio Torres

The cloud/droplet model
Krylov space methods
Implications for our hydrodynamic interaction model
The algorithm warehouse
Conclusions and future work
Can we solve the droplet system under general circumstances?

Move better... move faster...

Lou Rossi & Claudio Torres

The cloud/droplet model
Krylov space methods
Implications for our hydrodynamic interaction model
The algorithm warehouse
Conclusions and future work
Can we solve the droplet system under general circumstances?

Move better... move faster...
Lou Rossi & Claudio Torres
The cloud/droplet model
Krylov space methods
Implications for our hydrodynamic interaction model
The algorithm warehouse
Conclusions and future work
Can we solve the droplet system under general circumstances?

- Move better... move faster...
- Lou Rossi & Claudio Torres
- The cloud/droplet model
- Krylov space methods
- Implications for our hydrodynamic interaction model
- The algorithm warehouse
- Conclusions and future work
Preconditioning

There are two reasons to precondition our system.

1. Improve the quality of the solution.

\[\frac{\| \vec{x} - \vec{x}_n \|}{\| \vec{b} \|} \leq \kappa(A) \frac{\| A\vec{x}_n - \vec{b} \|}{\| \vec{b} \|} \]

2. In our case, improve the distribution of eigenvalues of the system to be solved.
Preconditioning

There are two reasons to precondition our system.

1. Improve the quality of the solution.

\[
\frac{\|\tilde{x} - \tilde{x}_n\|}{\|b\|} \leq \kappa(A) \frac{\|A\tilde{x}_n - \tilde{b}\|}{\|b\|}
\]

2. In our case, improve the distribution of eigenvalues of the system to be solved.
Preconditioning

Choose an appropriate M to solve...

$$M^{-1}Ax = M^{-1}b$$

Ideal properties for M:

- $M^{-1}A$ has good convergence properties.
- $M^{-1}y = c$ can be solved quickly and accurately (unlike $Ax = b$).
Choose an appropriate M to solve...

$$M^{-1}Ax = M^{-1}b$$

Ideal properties for M:
- $M^{-1}A$ has good convergence properties.
- $M^{-1}y = c$ can be solved quickly and accurately (unlike $Ax = b$).

Schwarz Preconditioner

$$M^{-1}\tilde{x} = \sum_l \hat{R}_l^T P_l \hat{A}_l^{-1} \hat{R}_l^T \tilde{x}$$
Normality

Asymmetric
Symmetric

\[10^4 \]
\[10^2 \]
\[10^0 \]
\[10^1 \]
\[10^2 \]
\[10^3 \]

\[\kappa_2(V) \]

\[N \]
Performance summary

<table>
<thead>
<tr>
<th>Solution Method</th>
<th>fixed cost</th>
<th>variable cost</th>
<th>$\epsilon = 10^{-6}$</th>
<th># iter.</th>
<th>total time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Gauss-Seidel</td>
<td>0.1254</td>
<td>0.3785</td>
<td>18</td>
<td></td>
<td>6.9390</td>
</tr>
<tr>
<td>Matrix-free GMRes</td>
<td>0.1163</td>
<td>0.3463</td>
<td>11</td>
<td></td>
<td>3.9259</td>
</tr>
<tr>
<td>Non-Overlap. Precond. GMRes</td>
<td>0.1402</td>
<td>1.1873</td>
<td>9</td>
<td></td>
<td>10.8261</td>
</tr>
<tr>
<td>Overlap. Precond. GMRes</td>
<td>0.2138</td>
<td>2.5564</td>
<td>2</td>
<td></td>
<td>5.3266</td>
</tr>
<tr>
<td>GMRes with Sparse Rep. of A</td>
<td>0.3591</td>
<td>0.1317</td>
<td>11</td>
<td></td>
<td>1.8084</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution Method</th>
<th>fixed cost</th>
<th>variable cost</th>
<th>$\epsilon = 10^{-13}$</th>
<th># iter.</th>
<th>total time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Gauss-Seidel</td>
<td>0.1254</td>
<td>0.3785</td>
<td>92</td>
<td></td>
<td>34.9474</td>
</tr>
<tr>
<td>Matrix-free GMRes</td>
<td>0.1163</td>
<td>0.3463</td>
<td>31</td>
<td></td>
<td>10.8516</td>
</tr>
<tr>
<td>Non-Overlap. Precond. GMRes</td>
<td>0.1402</td>
<td>1.1873</td>
<td>26</td>
<td></td>
<td>31.01</td>
</tr>
<tr>
<td>Overlap. Precond. GMRes</td>
<td>0.2138</td>
<td>2.5564</td>
<td>4</td>
<td></td>
<td>10.4394</td>
</tr>
<tr>
<td>GMRes with Sparse Rep. of A</td>
<td>0.3591</td>
<td>0.1317</td>
<td>31</td>
<td></td>
<td>4.4418</td>
</tr>
</tbody>
</table>
Move better...
move faster...

Lou Rossi &
Claudio Torres

The cloud/droplet model
Krylov space methods
Implications for our hydrodynamic interaction model
The algorithm warehouse
Conclusions and future work

“We have top men working on it now...”

1 Fast multipole...
2 Krylov space recycling...
3 Preconditioned preconditioning with the Cauchy Integral Equation...
“We have top men working on it now...”

1. Fast multipole...
2. Krylov space recycling...
3. Preconditioned preconditioning with the Cauchy Integral Equation...
Move better... move faster...

Lou Rossi & Claudio Torres

The cloud/droplet model
Krylov space methods
Implications for our hydrodynamic interaction model
The algorithm warehouse
Conclusions and future work

“We have top men working on it now...”
“We have top men working on it now...”

1. Fast multipole...
2. Krylov space recycling...
3. Preconditioned preconditioning with the Cauchy Integral Equation...
Recall, Cauchy’s integral formula.

\[f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} \, dz \]
A different way to solve preconditioned systems.

Recall, Cauchy’s integral formula.

\[f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} \, dz \]

It can also be used for matrix valued functions.

\[f(M) b = \frac{1}{2\pi i} \int_C f(z)(zI - M)^{-1} b \, dz \]
Conclusions and future work

- GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We achieve a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include Re dependence.
Conclusions and future work

- GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We achieve a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include Re dependence.
Conclusions and future work

- GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We achieve a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include Re dependence.
Conclusions and future work

- GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We achieve a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include Re dependence.
Thanks